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Energy and linear limits are calculated for the Poiseuille-Couette spiral motion 
between concentric cylinders which rotate rigidly and rotate and slide relative 
to one another. The addition of solid rotation can bring the linear limit down to 
the energy limit with coincidence achieved in the limit of infinitely fast rotation. 
If the differential rotation is also added, the solid rotation rate need be only 
finite to achieve near coincidence. Sufficient conditions for non-existence of sub- 
linear instability are derived. The basic spiral character of the instability is 
analysed and the results compared with the experiments of Ludwieg (1964). 

1. Introduction 
The basic motion whose stability will be studied is a spiral flow between 

concentric rotating sliding cylinders. Forward motion is induced by the shear 
of sliding the cylinders relative to one another and by a uniform pressure gradient 
along the pipe axis. Circumferential flow is induced by the shear transmitted 
by a differential rotation. The basic flow is, therefore, a combination of Couette 
and Poiseuille flow between annular cylinders; it does not involve inertial non- 
linearities and is independent of the flow Reynolds number. 

These annular flows are simple enough to allow analysis, yet they do contain 
a domain parameter, the radius ratio, which allows one to see how the stability 
limits change as the domain is varied from the round pipe to the (narrow-gap) 
channel. The variation of the stability and instability limits with the radius 
ratio is a valuable and sensitive experimental observable, which seems to have 
received almost no theoretical attention. $ 

The theoretical context of our study of spiral flow is a global theory in which 
the linear limit gives sufficient conditions for instability, and the energy limit 
gives sufficient conditions for stability (for example, Joseph 1966, Joseph & 
Shir 1967). When the two limits coincide, they define the necessary and suf- 
ficient condition for stability. Ordinarily, these two limits will not coincide. Then, 
the region between the two limits is a candidate for non-linear instability. We 
call such non-linear instability which lies below the linear limit ' sublinear '. 

t Present address : Department of Mechanical Engineering, Duke University, Durham, 
North Carolina. 

$ But the domain variations are studied in Couette flow between rotating cylinders by 
Sparrow, Munro & Jonsson (1964) and by Nickerson (1969), and in Poiseuille flow by 
Mott & Joseph (1968) and Joseph & Carmi (1969). 
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In  shear flow, sublinear instability seems to be the rule rather than exception, 
and even in boundary layers, it  seems possible to initiate transition at  Reynolds 
numbers far below the ones for which the Tollmein-Schlichting waves appear 
(Elder 1960). For Poiseuille and Couette flow, the energy limits and linear limits 
are very far apart, and neither is ‘close’ to experiment (Joseph & Carmi 1969). 

The addition of rotation even without differential rotation can strongly alter 
this stability picture. With differential rotation, one can have Rayleigh’s 
central force mechanism as a source for instability, and the possibility of some 
type of Taylor vortex disturbance must be considered. But even a ‘ stabilizing ’ 
distribution of angular momentum (increasing outward) can (and does) provide 
an environment in which disturbance Coriolis forces can exist and induce in- 
stability. The essentially inviscid character of these forces associated with 
rotation make attractive an entirely inviscid analysis of the stability problem, 
a.nd such analyses have been constructed by Chandrasekhar (1960) and Howard & 
Gupta (1962) in the restricted context of axially-symmetric disturbances, But 
the really interesting deep (low Reynolds number) instabilities, which one might 
expect to be associated with axially-symmetric Taylor vortices when the flow 
is pure swirl, it turns out, are associated with a spiral when the flow is a spiral. 
This was shown, first, by the inviscid analysis of Ludwieg (1961) and, later, by 
a most ingenious experiment (Ludwieg 1964) which gives to this spiral flow a 
very central place in the theory of hydrodynamic stability. It is now clear from 
the work of Pedley (1968) that the result of Ludwieg does not depend in any 
profound way on the choice of a particular (linear shear) velocity profile. 

Of course, one cannot tell from inviscid analysis whether an instability is deep. 
For this we need the criterion for stability and, even in the context of a linearized 
theory, this requires a Reynolds number. One aim of the paper is a linear theory 
for Ludwieg’s experiment which could also be used for future experiments with 
spiral flow. For the narrow gap, such an analysis is already partly available in the 
paper of Kiessling (1963). But apart from a special (BBnard problem) solution 
which does not give the smallest linear limit, Kiessling is forced to approximate the 
solution with a Galerkin iterative procedure, which seems not to converge well 
for all of the values of the parameters considered by him. We have given a much 
simpler linear analysis, not so much for the above reasons, but because Kiessling’s 
results are not extensive enough to allow for a comparison with the result of 
energy analysis or with experiments. 

The analyses of Taylor flow between cylinders with small axial (Poiseuille) 
flow of Hughes & Reid (1968), Krueger & Di Prima (1964) and Datts (1965) have a 
somewhat special character, because they allow only for axisymmetric dis- 
turbances, and these are not the most unstable. 

Linear viscous analyses for the rotating Couette and Poiseuille flow do already 
demonstrate profound rotation-induced changes which, for suitably adjusted 
rates of rigid rotation, drive the stationary, absolutely-stable pipe and Couette 
flow to instability at Reynolds numbers of about 100. 

What is even more remarkable is that the rotation can drive the linear limit 
so low that it can be brought into exact, or nearly exact, coincidence with the 
(rotation-free) energy limit. At any rate, for some parameter values, the strongest 
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possible stability statements (which imply extremely rapid decay of disturbance 
of any size) can be given. The fact that this coincidence of the stability and 
instability limits could be achieved in a rotating plane Couette flow was first 
observed to be true by Busse (private communication). The fact that the same 
coincidence can be achieved in a rapidly rotating parabolic Poiseuille flow is 
noted in the paper of Joseph & Carmi (1969). 

This study develops the most general conditions under which the exact spiral- 
flow solutions of the Navier-Stokes equations are sublinearly stable, or nearly so. 
Our results hold for logarithmic or parabolic axial profiles in Couette or combined 
Couette-Poiseuille flow between sliding and rotating concentric cylinders. The 
main result is this: At all radius ratios (except for small ones, say 7 > 0.1)) one 
can define a mean, basic-flow spiral angle and an energy spiral angle. The energy 
functional takes on its maximum value among functions which do not vary along 
the energy spiral. It is possible, for every spiral angle and radius ratio, to choose 
a rotating co-ordinate system in which the disturbance exists and is steady, and 
to choose a differential rotation to make the energy and basic-flow spiral coincide. 
Then, the energy and linear limits coincide (nearly for most parameters, exactly 
for others). Stated in another way: the problem of spiral flow is characterized by 
an axial speed, an angular-velocity difference, an angular velocity and the radius 
ratio. It is possible to specify, a priori, an explicit relation among these four 
parameters to bring the instability and stability limits into coincidence or near 
coincidence. 

Without the optimal adjustment of the differential rotation, our analysis 
indicates that one can still find a rotating co-ordinate system in which the dis- 
turbance is steady, but the disturbance spiral and energy spiral (basic-flow 
spiral) do not, then, coincide. For these cases, a region where sublinear solutions 
must occur, if they exist, is delineated. 

The analysis allows proof of what has been said within a mean-radius approxi- 
mation and, without this approximation, in several limiting cases. 

To the considerable extent to which the outcome of this analysis can be com- 
pared with the experimental results of Ludwieg, the agreement is good. 

Not all of our results are established rigorously. Rigorous results are given as 
lemmas and theorems. 

2. The basic-spiral motion 
Let R,, R, and R,, !2, be the radii and constant angular velocity, respectively, 

of the inner and outer cylinders. The cylinders are pulled axially so that the 
difference in axial speed is U,, and the co-ordinate system is chosen so that the 
inner and outer cylinders have axial speeds &and 0, respectively. An axial pressure 
gradient is maintained so that the maximum excess axial speed above that 
induced by sliding is Up. The physical problem and co-ordinates are sketched in 
figure 1. 

Let (R, 4, X )  be the polar cylindrical co-ordinates and R, 6 R < R,, 7 = R,/R,. 
A basic laminar solution of the Navier-Stokes equations of the form 

W R )  u;, U . )  = (0, qm, u,(m) 
35-2 
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is readily obtained as U i  = AR+ B/R, 

and 

FIGURE 1. Spiral flow between rotating-sliding cylinders. Basic flow: U = (0, U4(R),  U,(R)). 
Disturbance flow: u = (w, w, u). 

Up is the maximum value (RIB2 = [(y2- l)/ln72]4) of the part of the velocity 
which is forced by the axial pressure gradient alone. We are able to get especially 
interesting results when U, has one of two special forms. The first of these is 
Couette flow (Up = 0 ) ,  and the second is the parabolic flow 

U, = U,(l- R2/R%) (2-3) 

which is obtained from (2.2) by properly relating Up and U,. 
In  the work, it is convenient to express the velocity components relative to 

a co-ordinate system which rotates with a constant angular velocity C2. In  this 
rotating system, ( 2 . 2 )  is unchanged, but (2.1) becomes 

The vector U is the velocity relative to the rotating co-ordinates. 
Many of the classical stability problems are special cases of spiral flow. When 

Up = 0, (2 .2 )  describes Couette flow between rotating and sliding cylinders. If 
the velocity V,  of sliding is zero, one has the well-known problem of Couette flow 
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between rotating cylinders leading to instability in the form of Taylor vortices. 
In  the limit 7 -+ 1, we recover the problem in which the plane Couette flow rotates 
around an angular-velocity vector in a plane parallel to the boundaries but 
oblique to the relative motion of the boundaries. With U, = Q, = Q2 = 0, we 
have classical Poiseuille flow in a channel (7 = 1) or a pipe (3 = 0) or in an annulus. 

Dimensionless co-ordinates are ( r ,  q5, x), where the unit of length is R, - R, and 
R/R, = r( 1 - 7). The basic flow velocities are made dimensionless with a reference 
velocity U, (to be specified later), and the dimensionless velocity components 
are (0, V ,  U ) ,  where V(r )  is the dimensionless version of (2 .4) .  The Reynolds 
number is taken as U,(R, - R J v .  For the disturbance, we shall use the velocity 
vector u with components (u, v, w). We use the same notation u, u, v, w €or the 
physical disturbance, the dimensionless disturbance or the amplitude of the 
normal-mode decomposition of this disturbance. The meanings of the symbols 
will be clear from the context in which they are used. 

3. Stability and instability equations for spiral flow 

relative to a system of co-ordinates rotating with a steady angular velocity: 
The analysis starts from the non-linear Navier-Stokes equations written 

(3 .1 )  
au 
at 
-+ 2 8  x u + (u. V) u + (u. V) U + (U.  V) u = - Vp + VAU, 

v . u = o ,  u ( X , Y , Z ) = u ( X + 2 ~ / a , Y , Z ) ,  ( 3 . 2 a ,  b )  

and u = OIR=R1,Hz. ( 3 . 2 ~ )  

Here, for U we understand the spiral flow of the previous section. 
Let ( ) designate integration over a volume of pipe of length 2 n / a .  Multiplica- 

tion of (3 .1 )  by u followed by { )using (3 .2 )  gives (see Serrin 1959 or Joseph 1966) 

l a  
- 2 at - ( 1  u 18) + (u . vu . u) = - v(Vu : VU). ( 3 . 3 )  

The form of this equation is independent of the rigid rotation, for though U 
depends on SL, the symmetric form u . VU . u does not. 

As in Joseph (1966), 

Here, {lVuIz) 2 a2(lu12) and v > vE where 

v, = max { - (u . VU . u)}/( I Vul 2), (3 .4)  
R 

and A is the collection of smooth functions satisfying (3 .2) .  Then, 

&(I U I  6 +(I U I  2 ) > l t = o  exp {2a2(v, - v) t). (3 .5 )  

It follows that if v, < v, the motion U is stable and any disturbance of this 
motion decays very fast. On the other hand, if v < v,, an initial disturbance can 
be found which will make the energy increase for a time. For example, the 
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disturbance which solves (3.4) will make ( ~ u ~ ~ )  increase if v < vE. This can be 
seen by inspection of (3.3). 

The energy criterion V ,  < v suffices to guarantee stability. We obtain the 
energy limit vE as the largest of the eigenvalues 3 of the Euler equations 

9 ' . ~  = 3 A u - v ~ "  (3.6) 

for (3.4). Here 9') the symmetric part of V U ,  is the rate of strain matrix. The 
rotation parameters Q, and Q2 can enter 9 only in the combination a,- Q,. 
In  dimensionless variables (U, is the unit of velocity and R, - R, is the unit of 

(3.7) 

R -R 
where 9 . u  = 

and D = d / d R ,  D = d/dr.  
The linear problem for (3.1) (put (u.V)u = 0) gives a linear limit v = vL and 

a criterion v, > v which is sufficient for the instability of (3.1), (3.2) (cf. $6) .  
The linear limit depends on the rotation parameters Ql and Q2, independently. 
Hence, the linear limit depends on one more parameter than the energy limit, 
and we want to learn how to choose this parameter to give the deepest instability 
($863 7 ) .  

4. Energy (stability) eigenvalue problem 
It is, in general, not possible to solve the stability or instability problem for 

spiral flow exactly (but it can be done when Up = 0 and 7 + 1) .  It is possible, 
nevertheless, to establish a few important analytical results. These are: (1) sym- 
metry requirements which both establish a basic asymmetry for spiral flow and 
reduce the range of parameter values over which the search must be carried out, 
(2) eigenvalue estimates which assure the existence of an extremalizing wave- 
number with a finite, non-zero modulus, and (3) a t  the same time, give bounds on 
the stability and instability limits. 

Equation (3.7) can be reduced by normal modes proportional to exp {i(ax + n$)}, 
where n ranges over integers. This leads to the eigenvalue problem for the 
eigenvalues p E  

(4.1) 

Qp,vrD( V / r )  + $pEuDU = 9 , w  - (2in/r2) v- Dp, 

&pE wrD( V / r )  = 9, v + ( 2in/r2) w - inp/r, 
~ P E W D U  = L,u-~uP, 

D(wr)+inv+iaru = 0, 

where 

1 n2+ 1 1 
9,=-D(rD)---a2, L , E ~ , + ~ =  L. 

r r2 
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The working equations for the calculations are obtained from (4.1) as follows: 
Set t = wr, eliminate p and w from (4.1) to find 

- &p,n%(DU)/r - (a2@ + 2ia3u + iarDlu) 

+ +pEn(aruD( P/r )  - (it/.) D(rD( P/r ) )  - ZiD/’D( V/r ) )  = L2j + 4iaLu, 

- &pEn2i(DU)/r = iarDL& - (n2 + a2r2) Lu - 2aZrDu- +pEar$rD( PIT). 

(4.3) 

(4.4) 

and 

The basic working equations are (4.4) and the following 

- +pEr-lDU{(n2 + a2r2) u + iarD/’) - iar!D(r-lDU) 

+ &pE{(a/n)(n2+ a2r2) urD( V / r )  - ( in / r )  !D(rB( V / r ) )  

- ( in/r)  (2n2 + a2r2) D[rD( V/r ) )  = L2#‘ + Biau, (4.5) 

(4.6) 

which is obtained from (4.3)) (4.4). At the boundary, r = ~ [ ( l - y )  and 1/(1 -q), 

u = & = D i  = 0. 

The system (4.4)) (44, (4.6) is an eigenvalue problem for the numbers 
pa( U ,  V ,  a, n). This system is equivalent to (4.1)) (4.2) and determines the same 
eigenvalues and eigenfunctions. We search over functions u and 1 and numbers 
a and n for the smallest of the values pE( U ,  V ,  a, n).  

Symmetry properties of pE are the subject of the following: 

LEMMA 1. Let pE( 77, P, a, n) be any eigenvalue of (4.1)) (4.2). Then 

P ~ ( U , V 7 a , n ) = P E ( - U 7 V , - 0 1 , n ) = P E ( - U , V I , . , - n )  

= pE( U ,  - V ,  -a, n) = pE( U ,  - 7, a, - n) = pE( U ,  V ,  -a, - n). (4.7) 

The eigenvalue is unchanged if the ratio of ratios U / V  to a/n is of one sign. If 
either U or V is zero, then we have complete symmetry with respect to a and n. 
It is an interesting mathematical (and physical) fact that the spiral flow has 
not complete symmetry but, instead, is characterized by the ‘screw) symmetry 
just mentioned. 

Proof of Lemma 1 

Let u, /’ be the eigenfunction for (4.4), ( 4 4 ,  (4.6) with eigenvalue pE( U ,  V ,  a, n). 
Then, the following transformations leave (4.4), ( 4 4 ,  (4.6) unchanged: 

(1 )  U , a + - U ,  -a; w,t+-u ,[ ,  

( 2 )  U ,n+-U,  -n; u,i+-u*,!*, 

(3 )  V ,a+-V,  -a ;  u,e+u*,/*, 

( 4 )  V,n-+-V, -n; u,i+u,&*, 

(5) a,n+-a, -n; u,I-+u*,&*, 

where an asterisk denotes complex conjugates. The eigenfunctions on the right 
determine the last five eigenvalues of (4.7), respectively. The lemma shows that 
we can restrict the search for the smallest eigenvalue pE to a half-plane, say 

n > 0 ,  --co<a<co. 
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We shall show, in lemma 3, that the required minimum can be found in the 
finite half-plane away from the origin. I n  this way, we exclude the possibility 
that p E  takes on its sma.llest values as a2 + n2 3 0 or a2 + n2 -+ 00. We need first, 
however, to give a family of isoperimetric inequalities involving Bessel functions. 

LEMMA 2. The solution of the minimum problem 

h ( 1 , ~ )  = min/71R(du/dR)2 dR//71R'+1~2 dR 

among functions u(R) which vanish at R = and R = 1 is ( 1  =+ - 2) 

where h ( 0 , ~ )  i s  found as the first positive root of the equation 

and 
0 = Jo(h4q) Yo@&) -J0(h4) Y0(h4y), 

A( - 2 , ~ )  = 7r2/(ln T ) ~ .  (4.10) 

Proof of Lemma 2 

Under the transformation y = R1+'12, we can write 

/71R(du/dR)2 dR 

/71Rz+1u2 dR 
A =  

The Euler equation for the minimum of the functional A(0, ~ l f l / 2 )  is 

(4.11) 

The solution of this problem is the Bessel function 

u ( y ,  7) = J,(% y) Yo(htql+lq - Jo(h/l+l/2) Yo(% y). 

This vanishes for y = 1 if h is a zero of u( 1 , ~ ) .  The smallest positive root 2 = h 
is the solution of the minimum problem (4.8). 

breaks down, and we work directly 
with the Euler equation for the functional A( - 2 , ~ ) .  This is 

If 1 = - 2,  the transformation y = 

u(1) = u(3) = 0. 
The general solution is 

u = A cos (%In R)  + B sin (24 In R). 

To satisfy the boundary conditions, we must have 

The smallest value h of 2 is given when m = 1. 
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On the range q / ( l - q )  < r < 1/(1 -T) ,  we may write the isoperimetric in- 
equalities as 

and 

where 

(4.12) 

(4.13) 

With these inequalities, we can locate the minimum ofp,  in the finite half 
(a,n) plane away from the origin, and, at  the same time, give a preliminary 
estimate of the limit for strong exponential stability. 

LEMMA 3. Let pE(  U ,  V ,  a, n, q) be any eigenvalue of (4.1), (4.2) where a and n are 
any real numbers and 0 Q 7 < 1. Then 

(4.14) 

a5 = ( l /7){~(l-Tr)z[h(l ,T)+ 11)-4a2, 

and 

a6 = {&q(1-q)2[A(-1)v)+ l]}-ta,* 

Proof of Lemma 3 

In view of lemma 1, it will suffice to consider only positive n. The eigenvalues 
(pE) of (4.1) satisfy the following integral relation: 

(4.15) 

(4.16) 

(4.17) 

Here ‘Re’ denotes the real part. TO obtain (4.15), multiply the first, second, and 
third of equations (4.1) by w*, v*, and u*, respectively; integrate and then re- 
arrange. 
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We need to estimate Ian from above and D,, from below. By the Schwarz and 
Cauchy inequalities, using the expressions (2.2), (2.4) for V and U ,  we have that 

and 

One can also show that (4.16) is dominated by quantities proportional to the 
wave-number. For this purpose, we use the last of equations (4.1) (divu = 0) 
and find that 

(1 Dw( ,) +(I:[) = (/5 + -awl2) d 2a2( 1 ~ 1 2 )  + 2n2( 1";). 
Then, using (4.12), (4.13) for the terms on the left, we find that 

(\:I2), , z ( y ) + b g n 2 ( y ) ,  (4.20) ' I  b4( irl) < b5a2( I:[) f b6n2 (lrl) 
b __ < b - a  7 

blO(l4 9 6 bll-aY1 4 2, + b12n2(1 4 9, 
772 

where b 4 - 2  - '( (iGp + I ) ,  b 7 = ~ ( 1 - v ) { ~ ( - 1 , v ) + 1 } ,  

b, = (1 -r)-l, b, = (1 --v)/77 bl, = [(I -v)/vI2. 
b lo=&(1-~)2{A( l ,~ ) - l } ,  b,= 1 / ( 1 - ~ ) ~ ,  b 6 =  bl l= 1, 

Now, using the estimates (4.20) and the second of the estimates (4.18), (4.19), 
we find 

Re (WUrD (F)) < && [b6-a2( Ipr)( + b6nz( Ip")')" 
< b  --a f - n  b, 2 )"(l:r)' (4.21) 

b 
and Re (WUDV) < 2 { b l l a 2 (  IuI 2)2 + b12n2( IuI 2) (I wI z)]+ 

(blO)* 
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We form the ratio lan/Dan and estimate Tan with the last inequality of (4.18) 
and (4.19) and Dan with (4.23), (4.24), (4.25) to find that 

= +(a1+a2+u3). 

Next, we estimate la, with (4.21), (4.22) and Dan, as before, to find 

This proves lemma 3. 
The estimate of the lemma shows that l/pE + 0 as a2+ (1 -q)2n2 tends to  

zero or infinity. It follows that l / p E  takes on its maximum for a finite value of 
a2 + (1 - 7)2n2. Moreover, the lemma gives an explicit and rigorous bound on 
this maximum value. For example, for Couette flow between rotating cylinders 
(U: + 77; = O ) ,  one finds that 

This estimate is a slight improvement of the estimate 

(4.27) 

which has been given by Serrin (1959). Serrin's estimate (p < 10.92 for Taylor's 
apparatus, 7 = 0.88) is about t of the value given by the actual solution of the 
maximum problem (p  < 44.5). This gives a rough estimate of the numerical 
accuracy of the estimates of lemma 3. 
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It should be noted that with certain obvious changes in the definition of the 
constants bi, one could use these estimates for any fields U(r )  and V(r )  and not 
just the ones mentioned in $2. The estimates are explicit in dependence on domain 
parameters (a,  n, 7) and are uniformly bounded on any closed interval r0 6 7 < 1, 
T~ > 0. In  the limit 7 + 1, (1 - - T ) ~  (n- 1)2 + n2(1 - Y ) ~  + b2. There can be no 
differential rotation when q -+ 0. Then we have Hagen-Poiseuille flow, which 
was treated separately by Joseph & Carmi (1969). 

5. Linear (instability) eigenvalue problem 
The estimates of lemmas 2 and 3 hold, also, for the linear problem. To see this, 

set u . Vu = 0 in (3.1)) then use normal modes proportional to exp {i(as + n$) + wt}  
where w is complex. In  this way, we arrive at the equations 

v 
r 

Re(~)+iYm-2-v  = 

W 
Re(@)+--D(Pr)+iYv = 

r 

1 

P 
Re (w) + i9’u + wDU = - iap + - Lnu, 

9’ = (n /r )  P+aU-Im(w), 

where P = V +  Qr, and u, v, w satisfy (4.2). 

LEMMA 4. Let p = pL(.4p, U ,  P,a,n) > 0 be the largest number such that all 
eigenvalues w of (5.1) and (4.2) have Re(@) d 0. Then p ~ l ( a , n )  6 p ~ l ( a , n ) ,  and 
the estimate (4.14) holds, also, for l / p L .  Let Re ( w )  = 0. Then there is symmetry for 
the disturbance? given by 

p L ( y ,  U ,  P, a, n) = p L ( Y ,  - U ,  P, -a, n) = pL( -9, - U ,  P, a, - n) 
= p L ( - y ,  U ,  P, -a,n) = p L ( y ,  U ,  - ~ , a ,  -n) 

= p L ( - 9 ’ , U , P , - a , - n ) .  (5 .2 )  

The estimates of lemma 3 hold for pL, because we can form energy integrals 
for p L  directly from (5.1), and the real part of these integrals gives 

p i 1  = ‘ a n D a n  max (IanlDan) = PZ’, 

as before. The imaginary part of the integrals could be used for estimates of the 
growth rate (Joseph 1969; Carmi 1969). 

The symmetry result is proved here as in the proof of (4.7). For example, 
corresponding to (1) of that proof, we show invariance when 

( 9 ’ , U , F , a , n ) + ( Y ,  - U , F ,  -a,n) and (u , v ,w ,p )+( -u , v ,w ,p ) .  

t Equations (5.2), like those of lemma 1, give the ‘screw’ for the disturbance. Here, in 
addition to the requirement that nV and 0rU have the same sign, we need that this be the 
sign of the wave speed Im o. 
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6. Conditions for the non-existence of sublinear instability 
The possibility that instability can be initiated by non-linear disturbances for 

sublinear values of the stability parameters can be eliminated when the energy 
and linear limit coincide. This limit is, then, both necessary and sufficient for 
stability. Our inquiry, here, is about the possibility of finding values of the 
parameters which bring the linear limit as close as possible to the energy limit. 
It is convenient to think of spiral Couette flow, and for this the parameters are, 
say, Q, - Ql, Qz, 7 and U,.? The linear limit vL(Qz - Q,, a,, U,, 7) depends on 
these parameters, but the energy limit vE( Qz - Q,, U,, 7) depends on one less 
parameter. We will seek the values of SZ, which make the value v, - V ,  smallest. 

We will want to compare the eigenvalue problems (8) and (L),  which are 
defined below. In  these problems, equations (3.2b, c )  hold. The problem ( E )  
is to find a vector u satisfying the above conditions and an eigenvalue w(v)  
such that 

Since $3 is symmetric w is necessarily real. The energy eigenvalues P of (3 .6 )  
correspond to a zero eigenvalue W( 8) = 0 of ( E ) ,  and v, is the largest of the eigen- 
values D of (3.6).  The perturbation formula 

u ( v ) u + u . ~ - v A u + V ~  = 0. ( E )  

follows in the usual way from ( E )  through the requirement that the right side of 
the equation expressing the first derivative of (E) ,  

u U + U . ~ - V A U + V @  = LJU+AU, 

be orthogonal to solutions of (E) .  

W ( V )  is also a solution of the problem 
We want to know when an eigensolution of the problem ( E )  with eigenvalue 

wu + 2S2 x U+ U. V U  + U .VU- VAU + V p  = 0. (L)  

Equation (L) and the boundary and side conditions define the spectral problem 
of linear theory. 

THEOREM 1. Suppose that (1) u is an  eigensolution of (E) and w(v)  i s  its eigen- 

(6.2) 

If (1) and ( 2 )  hold when v E - e  < v < V ,  ( E  > 0) then U is globally stable when 

value and ( 2 )  a vector S2 exists such that when 

curl((U . V ) u  + 2 8  x u}- &((curl U.V) u- (u. V) curl U> = 0, 

then u is  an  eigensolution of (L)  with eigenvalue w(v) .  

v > vE, and U i s  unstable when v < vE. 

Proof of Theorem 1 

Since u and U are solenoidal, 

curl{u. ( V U  - 9)} = - 4 curl (u x curl U) = - ;{(curl U .  V) - (u. V) curl U}. 
t In $6 and $7, we use dimensional variables. 
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Then, if (6.2) holds,? 
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( U . V ) u + 2 8 x u + u . ( V U - ~ )  = -v$) (6.3) 

(6.4) 

and we can write ( E )  as 

W ( V )  u + 2S2 x u + U. VU + U. VU = - V ( p  + $) + VAU. 

Comparison of (6.4) and (L)  proves that u is an eigensolution of (L)  with eigen- 
value o( v )  . 

It has been shown (in $3)  that if v > vE, then the basic motion U is globally 
stable. For instability, it suffices to have w(v)  > 0 in the spectral problem (L) .  
Then, there will exist disturbances (solutions of (3.1)) which do not decay to 
zero (Yudovich 1965; Kirchgiissner & Sorger 1968 ; Sattinger 1969). We have 
instability when Y < v, because then, by (6.1), O ( Y )  > o ( v E )  = 0. This completes 
the proof. 

The theorem is not deep since so much of it is an assumption. But the formula 
(6.2) is important because it gives a computational procedure for finding the 
parameters of deepest instability when the assumptions hold, and for approxi- 
mating these parameters when the assumptions hold approximately. 

To apply (6.2), one needs only certain general properties of the energy eigen- 
functions u. For plane Couette flow ( U  = ex &) in a rotating co-ordinate system 
8 = axex + Q, e,, the energy problem can be reduced to the BBnard problem 
for X independent rolls (the energy result is independent of 8). Then, (6.2) can 
be written as 

Equation (6.5) shows that the X independent energy eigenfunction solves the 
linear problem when 

Or, one can satisfy (6.5) in the ‘fast rotation’ limit M: -+ 0,  Qs --f CQ, aQx = const. 
Since the ‘most unstable’ wave-number number for the BBnard problem is 
p = 3*12/(R,- R,) (when M: = 0)) we have that 

- 
4Q2, = - B .  

2o1Sl2,- [3.12/(R,-B1)] (@+2Q,) = 0, 

which gives the const. = aQZ. 
The energy limit for Couette flow (Joseph 1966) is 

&R,- R,)/v = 2.,/1708. 

Theorem 1 guarantees that this limit is necessary and not only sufficient for the 
stability of two families of rotating Couette flows just described. 

Busse (private communication) has given a different proof of the above result. 
It can also be obtained by comparison of the special linear solution of Kiessling 
(essentially that given in $9) with the energy result. 

t For the doubly connected cylinder, one finds from (6.3) that since u = 0, a+/aR = 0 
on the cylinders; this is sufficient to establish that q5 is single valued in the annulus. 



Global stability of spiral $ow 559 

There is, also, an exact ‘fast rotation’ result which holds for Poiseuille flow 
in a pipe. It can be obtained by comparison of Pedley’s (1969) linear result with 
the energy result and leads to limit Reynolds numbers of about 100. This ‘fast 
rotation ’ result holds, also, for rotating Couette-Poiseuille flow in the annulus 
(see 6 l l ) . ?  

To make further use of theorem 1, we need to develop the concept of an ‘ energy 
spiral’ at a mean radius. We shall construct an argument, but not a proof, to 
support the guess that along the spiral, the energy eigenfunctions do not vary 
or vary slowly. The spiral idea allows us to draw the relevant information from 
the theorem directly, without solving eigenvalue problems. We shall verify our 
guess numerically for the important spiral Couette flow problem (figures 3 , 4 ,  3 8) 
which was investigated experimentally by Ludwieg (1964). From now on, our 
analysis requires approximations, numerical work, or both. 

7. The maximizing disturbance and the energy spiral 
The disturbance U E A  which maximizes (3.4) we call the maximizing dis- 

turbance. For Couette flow [Up = 01 and Poiseuille flow [U, = 01 (when q > O ) ,  
the maximizing disturbance is a longitudinal vortex with a streamwise axis. 
Such solutions do not vary in the direction of the stream. The same result is to 
be expected for every parallel flow for the following reason: One finds the energy 
limit as the solution of 

vE = max(-(uwdU/dZ)/(]Vu12)), (7.1) 

where U = e ,U(Z) ,  

/i 

u(X, Y , Z )  = e,u+e,v+e,w = u 

au av aw -+-+- = 0, ax aY a 2  

and u = v = w = Olr=*fd .  (7.3) 

In general, we give to (7.1) its largest value when we can choose the product 
( W U I  to have the largest possible value consistent with a positive value of 
-wzc(dU/dZ) on each plane Z = const. while, at  the same time, holding IVU12 
to the most moderate values compatible with (7.2) and (7.3). Very little can be 
done with the function w, since, by (7.3), it  must vary (if it  is not identically 
zero) between its zero value at  the walls. But we could raise the value of wu by 
choosing larger u and, at the same time, hold the dissipation to small values 
and satisfy (7.2) among functions u, v, w which are independent of X ,  that is, 
among longitudinal vortices. 

t It used to be thought that the linear limit for Poiseuille flow and Couette flow without 
rotation which ranges over Reynolds numbers (R) in excess of 11,500, was in ‘better 
agreement’ with experiment than the O( 100) numbers of energy theory. This incredible 
view (1) ignores the actual outcome of experiments and (2) misinterprets the meaning 
of the energy and linear criteria. The two theories are in splendid agreement with ex- 
periment : instability is always observed when R > R, and stability prevails if R < R,. For 
the interval R, > R > R, there exist stable disturbances whose energy initially increases 
and also sublinear instability. It is striking how rotation can reduce this interval where 
increasing stable disturbanoes and/or sublinear instabilities are possible. 
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Here, the maximum problem takes the form (D  = d / d R )  
A similar argument holds for the general spiral flow U = ex Ux(R) + eq U4(R). 

vE = max{ -(w(vRD(U+/R) +u~U')))/(]Vu12), (7-4) 
A 

where ex u + e$ v + e, w is single valued, 

l a  1 av au 
u(R,$ ,X)  u(R,$,X+S~r/cc),  --(wR)+--+- = 0, (7 .5 )  R 8R Raq5 ax 

and u = v = w = OIR=nl ,XZ.  ( 7 .6 )  

As in the earlier argument, we expect the maximizing function for (7.4) to be 
found among the functions which allow one to raise the value of 

- w ( v ~ D ( ~ $ / ~ )  + uDu,) 
without too sharply increasing the value of the dissipation denominator of (7.4). 
The function w, as before, is not suited for this purpose, but one can raise the 
value of - (vRD(U$/R) +uBUX) without increasing the dissipation too sharply 
among functions w, u and v, which do not vary (or vary slowly) in the direction 
of the disturbance-velocity component 

U' - VRD(U$/R) ( 7 . 7 )  

It will be useful to give a bit more structure to this idea about the nature of 
the maximizing functions. Consider a tangent plane to the cylinder at  

R = #R,+R,). 

Let e,  and eUt be unit vectors in the direction of u' and v', respectively, and 
e,. e ,  = cos @ (figure 2). The direction X'  of the maximizing disturbance u', 
w, v'( = 0) is to be expected to have the direction given by the angle $, where 

In this direction, the maximizing function should not vary, or should vary 
slowly, a a 2siny2 a 

ax ax R,+R,a#' 
0 M 7 = cos@-+-- (7.9) 

which, for normal modes proportional to exp {i(EX +.$)I, gives the spiral angle 

(7.10) tan$ = %(R,+R,). 

As we shall see, this argument holds nearly for all 7 not too hopelessly small, 

We want, next, t o  draw the consequences of theorem 1 for the general spiral 

- 
--a 

and exactly for 7 -+ 1 when U,(R) is of the form (2.3) or (2.2) with Up = 0. 

flow. In polar cylindrical co-ordinates (R, q5, X), we can write (6.2) as 
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where eiui = e,u+egv+e,w 

is a solution (normalized with (\u12) = 1) of the energy problem, and we have 
put B((l/R)B(RU$)) = 0 in accord with (2.1). Equation (7.11) can be satisfied 
exactly only in the limit (R,-R, = d, R, -+ co, 7 + 1). Otherwise, if it holds at 
one value of R, it cannot hold at  another value of R. But in Q 8, we will show that 
i t  is a good approximate result which gives the values of the parameters corre- 
sponding to the deepest instability where the energy and linear limits are closest. 

FIGURE 2. Energy spiral. Along X’ the energy disturbance does not vary or varies slowly. 
There is a value of R, < R, < R, such that the energy spiral at the mean radius coin- 
cides with the basic stream spiral a t  R, for an observer rotating with angular velocity 
Q = Q,. (For justification, see figure 5 . )  To such an observer, the basic flow appears as 
a combination of axial and circumferential shears. That is, the basic flow velocity is 
zero, to such an observer, at the outer cylinder. For certain parameter values, the angle $ 
is also the angle between X and the spiral axis of the linear disturbance vortex. 

To use it, first put R = +(R1+ R2) ;  second, at  this R, consider disturbances of the 
energy type (7.9) for which a/aX+tan$((a/Ra+) = 0, and find the value of R 
which makes the derivative U . V in the direction of the basic flow a derivative in 
the direction of the energy spiral. Then, in the first bracket of (7.11), we may set 

(7.12) 

where U, (2.2) and $(R) (7.8) are evaluated at  R = +(R1+ R,), and thenselect Q, 
to make the second bracket of (7.11) vanish 

@U, cot $ + 2Q + UJR + (1/2R) D(RU4) = 0, (7.13) 

where a/aX has been eliminated with (7.9). 
Given that (7.12) and (7.13) must satisfy (7.11) at the mean radius, we have 

0 = ge,(B2Ux- ( l /B)DUx)  w+e,B(U$/R) w. 
36 F L M  43 

(7.14) 
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It is possible to satisfy (7.14) exactly when Up = 0 and 7 --f 1 or when U4 = 0 
and U, has the form (2.3). Consider the case Up = 0. Then, a t  R = Q(R,+R,), 
(7.14) can be written as 

(7.15) 

This can be satisfied identically not only when 7 --f 1, but also when 7 + 0. 
The value of w, itself, may be expected to be small relative to ( lu12) in that both 
w = 0 and Bw = 0 hold at the boundaries. For parabolic flow of type (2.3), 
the coefficient of e+ vanishes identically at all R, < R 6 R,. It follows that for 
spiral Couette flow and spiral parabolic flow, it may be possible to make the 
distance between the energy and linear limits very small by choosing the para- 
meters 0 and Q2 to reduce (7.12), (7.13) to an identity. The considerable extent 
to which this possibility is realized is revealed in 3 8 for the Couette flow and in $1 1 
for the parabolic flow. 

8. Spiral Couette flow 
We set Up = 0 and use (7.8) to write (7.12) at  the mean radius as 

where A and B are given by (2.1). Equation (7.13) may, then, be written as 

The angular velocity of the observer for whom the disturbance giving the deepest 
instability is steady is obtained from (8.1) as 

Q = Q2-747) (fi l--Q2h 
(8.3) 11 T 2  4(1-2ln+(l+q)) - 

r(7) = +- 
(1 + 712 

where 

We note that y > 0 for 0 < 7 < 1, and y(0) = y( 1) = 0. Also, y(7) has a relatively 
small maximum of about 0.082 occurring at 7 x 0.49. Hence, in the two limiting 
cases of 7 = 1, y = 0, such disturbances appear steady to an observer rotating 
with the outer cylinder, while for other y, the angular velocity of the observer is 
given by (8.3). This expression is valid for a choice of parameters for which the 
instability limit is as close as possible to the stability limit, that is, in the set of 
parameters for which (6.2) holds. This set is determined from (8.2), which can be 
written as 

(1 -7 )  
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It is clear that this choice of parameters does not depend on the observer (does 
not depend on Q). 

To verify the hypotheses about the energy spiral which lead to (8.3) and (8.4), 
we are forced to numerical calculation. The aim of the numerical calculation is 
the stability (energy) boundary (figures 3, 4) and the verification that it is 
mathematically sound to postulate an energy spiral at a mean radius (figure 5). 

rl 

FIGURE 3. Energy (stability) surface for Couette flow between rotating-sliding cylinders 
as a function of radius ratio, 7, and the angle x. Plane Couette flow in a rotating co- 
ordinate system is given by 7 = 1 ; Couette flow in an annulus with no differential rotation 
is given by x = 0'; and Taylor flow is given by x = 90". Because the circumferential 
wave-number, 7, must be an integer, the above smooth surface is an approximation to the 
surface with discontinuous first derivatives. The smoothed-out version is barely distin- 
guishable from the true surface. 

It is convenient in these calculations to define 

U, = [B:( Q, - Q2)2 + U:$, sin x = A,( Q, - Q2)/Uo and cos x = U,/U,. 

( 8 . 5 )  
Strong stability, then, is guaranteed when 

36-2 
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x = O', Couette flow 

0 0.2 0.4 0.6 0.8 1 .o 
7 

FIGURE 4. Projection of energy surface for x = 0" (Couette flow in an annulus) and x = 90" 
(Taylor flow). The solid curves are results of numerical integration of the complete eigen- 
value problem ( p E )  ; the dashed curves are the constant coefficient narrow-gap approxima- 
tions for disturbances in the direction of the energy spiral (p;). 

0 30 60 90 

X 
FIGURE 5. Justification for the mean-radius energy spiral. The dots are the outcome of 
exact numerical integration. The solid lines are calculated from (7.10) written as 

- ( l + ~ ) a / 2 ( 1 - q ) n  = tan$ 

where we have put Or = a(R,-R,). This is the mean-radius equation for the energy spiral. 
The dotted lines are the basic flow spiral (arctan V / U )  as seen by an observer rotating 
with the outer cylinder, at  the inner and outer radii. The energy spiral angle + lies between 
these extremes of the basic-$ow spiral angles (arctan V / U ) ,  and, hence, there is some 
radius R,, R, < R, < R, such that + = arctan ( V j U ) .  Thus, we have longitudinal vortices 
or streamwise eddies. Since only integer values of .n are permissible, the numerical results 
(dots) indicate a 'flattening' effect as x --f 90'. This effect is more pronounced at low 7, 
since the range of n for 0 < x < 90" decreases as 7 decreases. For example, n varies from 
14 to 0 for 71 = 0.8, but only from 2 t o  0 for 7 = 0.1 as x goes from 0 t o  90". 
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On the other hand, the flow is unstable when 

where pL is the smallest positive value for which a solution (5.1) and (4.2) exists. 
When 7 = 1, pE = pL and sublinear solutions are excluded for certain parameter 
values. 

I 
f I I  

- 200' 0 200 

- 200 0 200 

- 200 0 200 

I I  I l l  

- 200 / O  200 
w 2 2  - 

V 

FIGURE 6. Energy and linear (Sparrow, Munro & Jonsson) results for Taylor flow as a 
function of radius ratio, 9. The dashed line is a ray from the origin given by (8.6). Along 
the ray, the distance between the energy and linear limits is seen to be very nearly 
minimum. 

To what extent is it possible to choose Q2 to make pL-pE  small for 9 =k 11 
We can answer this question for cylindrical Couette flow, because when U, = 0, 
the linear limit is known from numerical calculations of Sparrow, Munro & 
Jonsson (1964). For U, = 0, we know from numerical calculation that the energy 
limit is taken on for axisymetric disturbances. Then, with 

(u. v) ui = ( ~ $ 1 ~ 1  au,/a$ = 0,  

(7.12) holds identically and (S.l), (8.3) are lost. With U, = 0, one has (8.4) in 
the form 
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This is a ray from the origin in the Ql, Q, plane (figure 6). A unique point of the 
plane is determined by the intersection of this ray with the upper energy boundary. 
This is the point which should be closest to the linear limit. The ray (8.6) does 
follow this deepest instability quite exactly (figure 6); when 7 = 1, the ray (8.6) 
gives Q, = Q2 and coincides with the Rayleigh-Synge line. The point of closest 
approach moves down the energy border as 7 is decreased, passes through Q2 = 0 
when 7 w 0.41, reaches a small, negative minimum when 7 w 0.26, and returns 
to Q, = 0 as 7 -+ 0. 

We cannot test the accuracy of the criterion (8.4) when V,  + 0, because we 
have not calculated the linear limit for this case. But the assumption of a mean 
radius, which is central in the derivation of (8.4), gives a good approximation for 
the energy spiral $ and the basic flow U,, U+ in (7 .12)  and (7.13). We think (8.4) 
is an accurate criterion of about the same precision as its special (U,  = 0 )  value 
(8.6). 

9. The narrow-gap plus mean-radius approximation for spiral Couette 
flow. 

The aim of the calculation of this section is a simple explicit theory to explain 
( 1 )  Ludwieg's (7 = 0.8) experiment and (2)  future experiments to test the 7 
variation. 

The use of a mean radius already suggests an approximation to obtain the 
explicit stability limits. The approximation consists of replacing variable coeffi- 
cients with constant coefficients a t  the mean radius and of making a narrow-gap 
approximation for the differential operators.? The approximation of the operators 
loses accuracy for small 7 but is exact in the limit 7 + 1. 

There is a distinction to be made between a mean radius approximation, like 
that which leads to (S.4), and the narrow-gap plus mean-radius approximation of 
this section. One has hope for the former when the coefficients are not too rapidly 
varying and do not change sign in the annulus. For example, (8.6) is a good 
criterion when 7 = 0.2, and it gives QJQ1 < 0, which contrasts sharply with the 
restrictions Q2/Q2, > 0, 1 - 7 small, set on the narrow-gap plus mean-radius 
approximation by Chandrasekhar. 

The approximations are carried out as follows: 
Consider the limit 7 + 1,  v/( 1 - 7) < r 6 1 /( 1 - 7) --f 00 and n/r --f /3. We have 

2in 
r2 

2%W - - 2, -0p + 9w- Dp, 2in inp 
r2 r 

=Y$.&V f - w - -+ 32, - ipp, 

and L,u-iap +3u-iap,  

where 9 D2- (a'+P'). 
Equation (9.1) allows us to simplify the right-hand side of the energy equations 

t Identical approximations are used by Chandrasekhar (1961, p. 309 and p. 375) to 
treat Couette flow between cylinders and combined Couette and Poiseuille (spiral) flow. 
Serrin (1968) shows how this approximation implies that the Taylor instability boundary 
is a hyperbola in the first and third quadrant of the R,, R, plane. 
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(4.1) and linear equations (5.1). We simplify the left-hand side by the mean- 
radius approximation and find that with 

where $ is the spiral angle (figure 2) and the angle x is defined by (8.5), the energy 
equation (4.1) can be written as 

- gp& f(x, 7)  {v sin $+u cos $} = - Dp + 9 w ,  
-&&f(X,q)wsin$ = -ipp+~?w, 

- &p&f(x, q )  w cos $ = - imp +9u, 
(9.3) 1 

and the linear equations (5.1) as 

(9.4) 

i Y w  -p;f(x, 7) {2Q2, + $( 1 - 7)  (7 + 3) sin $} v = - Dp + 9 w ,  

pk f (x, 7) {2Q2, - &( 1 + y)2 sin $} w + i Y v  = - ipp + P w ,  
iYu - p;; f (x, 7) cos $w = - iap + LYU, 

where 

The primes indicate that the eigenvalues are associated with the mean-radius, 
narrow-gap solution, The continuity equation has the form 

and u=v=w=o 

Stability is guaranteed when (R, - 3,) [ U: + R;((a2 - sZ1)2]3/v < minp, and in- 
stability when > pL. The eigenvalues p i  and& approach pL and p, as 7 + 1, and 
approximate pL and pE for 7 near one (figure 4). 

The most relevant wave-numbers for the deepest instabilities are not a and p, 
but are the wave-numbers along the energy spiral, that is, a’ and p‘ (see figure 2). 
Using the wave-numbers, the energy system (9.3) can be reduced, in the usual 
way, to a single sixth-order equation, 

(9.5) 1 DW -t ~CCU + ipv = 0, 
I r=2,/(1-2,L 1Kl-2,). 

{ 9 3 4 ( p L f ) a ’ D 9 +  (&p& f)zpf2}w = 0, (9.6) 

w = Dw = 9 , w  = 0 a t  Y = r/(l -T), 1/(1-7).  (9.7) 

with boundary conditions 

The minimum eigenvalue ( p k f )  for (9.6), (9.7) is found for the disturbances 
a’ = 0 which are transverse to the mean spiral flow and is given by 

(minpk)f(X,r) = 2(1708)*, p’= 3.12. (9.8) 

In  figure 4, we have compared p& with the exact numerical result. 

then, by elimination of p ,  u and v in that order, we obtain 
In the same way, we introduce a’ and p’ into the linear equations (9.4) and 

{9(9- i 9 ) 2 - i a f ( p ; f ) D ( 9 -  iY) - (p; f)”(V, 2, a,)} w = 0, (9.9) 
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and w = D w = L ? ( L ? - i i Y ) w = O .  (9.10) 
Here, 

p(q,x,Q2) = ( ~ , , + & ( 1  - a )  (y+3)sin$){4(af cos$-p'sin$)2 

x ( s1, - *( 1 + r)2 sin $) + 2(a'2 - 8'2) sin $ cos2 $ + 2a'P' 

x (cos2 1/. - sin2 $) cos $1. (9.11) 

A'= 10' 

Linear theory, p;, 
special disturbances 
(a '=9=0)  

P P ,  

90 

- 
1 1 1 1 1 I I  I I I I I I J  

0 1 2 3 0 0.4 0.8 1.2 
70 70 

6 2  a2 

8 2  a 2  

FIGURE 7. Comparison of approximate linear and energy results for disturbances in the 
direction of the energy spiral for 0 < x < 90" (0 < n, > a,) and 7 = 0.5. The top line 
is the eigenvalue belonging to a special linear solution whose spiral angle coincides with the 
energy spiral. The middle line is the smallest eigenvalue, and the spiral of its oigensolution 
does not, in general, correspond to the energy spiral. The bottom (horizontal) line is the 
energy eigenvalue. At the point of tangency, the linear and energy limits coincide, and 
sublinear instability can be excluded. 

I n  general, we seek the minimum value of p> over a', p', and this must be found 
from the general solution of the problem. This solution can be expressed by the 
algebraic system which is equivalent to  the differential equation [cf. Joseph 
1966, p. 1801. As in a similar problem by Chandrasekhar (1961, p. 374), for 
given wave-numbers a', p' and an arbitrary value of 9, the eigenvalue p i  
will, in general, be complex. Hence, we seek the value of Y which makes p i  real. 
It can be shown (similar to Chandrasekhar 1961, p. 24) that if the eigenfunction w 
of (9.9) is symmetric with respect to the annulus centre, t h e n 9  = 0. The numerical 
calculation gave 9' = 0 in all cases. 
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FIGURE 8. Comparison of Ludwieg’s (1964) experimental results with viscous linear theory 
and energy theory. For the experiment 7 = 0.8, 52,(R, -R1) /v  = 150. The dashed vertical 
line locates the value x for which the energy and linear results should, theoretically, come 
together. In (a) ,  we have given the stability and instability limit, and in (b ) ,  the value of 
the spiral angle. Black dots are unstable, and white ones are stable. 
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For the energy spiral disturbances, an easier result is available. Consider (9.9) 
and (9.10) for a’ = Y = 0. This has the following meaning: Prom (5.1), it is 
possible to show that the energy spiral disturbances a’ = 0, when coupled with 
Y = 0, appear as steady disturbances as seen by an observer rotating with 
angular velocity R given by (8.3). In  the present context, this relationship 
(resulting from a’ = Y = 0) is valid for any set of parameters of the basic flow, 
not just those in the set for which the instability and stability limits are closest, 
as discussed in $8. The resulting problem, again, is the B6nard problem, with 
the result 

~- 
1708 

[ 2 ~ ,  sin $ + *(I  - 7) (3 + 7) s i n 2 ~ 1  [cos2$ + %(1+ q)asin2+ - 2 ~ , s i n  11.1’ p p  = 

and p‘ = 3.12. 

(9.12) 

(9.13) 

Given the validity of the mean-radius, narrow-gap approximation, (9.12) is 
still a special case, and more general solutions (say, a’ $: 0, Y = 0) can (do) give 
smaller values for p i .  Numerical calculations (Munson 1970) show that Y = 0, 
a’ $1 0 gives to pL its smallest value over the range of values (x, fi2) considered in 
figures 7 and 8. However, it is easy to verify by comparing (9.12) and (9.8) 
that if we choose 

1 
4 sin 

R, = - [cos2 $ + &(v2 + 2311 - 1) sin2 $3, (9.14) 

then the p i  of (9.12) coincides with minph. It is no surprise that (9.14) is exactly 
the criterion (8.4) which we derived without a narrow-gap approximation. The 
result minp; = minpi, which is obvious for the exact (unprimed, 7 = 1) eigen- 
values, is also true for the primed eigenvalues (figure 7). 

10. Ludwieg’s experiments 
We want now to compare our theoretical results with the experiments of 

Ludwieg (1964). Ludwieg’s apparatus is like a long sleeve bearing which is 
rotated around its axis at a fixed angular velocity and is geared to a shaft in the 
bearing in such a way that the shaft can be made to turn and slide relative to the 
rotating bearing. Since the clearance is small (7 = 0.8), the flow develops almost 
instantly and is very nearly pure linear shear. 

For 7 = 0.8, we find from (9.8) that 

The special solution (9.12) gives 

427[(tan2x+ 0.822)/(tan2x+ l)] 
P i  = 

and sublinear solutions can be excluded (in the approximation) along the curve 
p&(fiz), a2), where ~(0,) is the curve 

- 0.225 
R - [cos2 x + 0.757 sin2 x]. 

- sinx 
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The graphs of pk, p; and x(Q2)  are shown for a representative value of 7 ( = 0.6) 
in figure 7. The values of & and pk differ by very little from the exact values 
pE and pL when 7 = 0.8 (see figure 4), and we shall regard the primed values as 
the true limits in the discussion which follows. 

In  Ludwieg’s experiments, the parameter S12(R2-R,)2/v = 150 is held fixed, 
and his results are expressed in terms of the parameters a, cz and d,, which are 
related to the parameters of this paper as follows: 

a = (1-7) / (1+7) ,  p = 150/Q2, 

i12 = (1 +aC+)/((a+ 1)2d;+ (1 -C,)2p, 
and x = arcsin((1- C“,)/((a + 1 ) 2 C ~  + (1 - d,)zp}, 

Since Ludwieg’s data show considerable scatter, we have used a ‘mean’ value 
of s1, to calculate the theoretical linear limit shown in figure 8 (cf. Munson 1970). 

Ludwieg’s experiment shows that even without the centrifugal force mechan- 
ism for Taylor instability, the rigid rotation can provide a background in which 
disturbance Coriolis forces lower the threshold of instability from 2000 to near 
the energy value O(lO0). Theoretically, a t  the values fi2,x(a2) for which the 
energy limit is attained (cf. figure 7), one can exclude the possibility of sublinear 
instability. This lowering of the threshold value for instability is a clear outcome 
of the experiment. So, too, the general spiral character of the observed instability 
supports the energy and linear analyses. The rather good agreement between the 
spiral angle and the linear theory does suggest that the observed mode can begin 
with an infinitesimal perturbation. It is worth noting that the observed spiral 
is in better accord with Ludwieg’s (1961) inviscid analysis than with the more 
complete viscous analysis given here. 

For very fast solid rotation (x = 0) ,  both energy theory and linear theory 
indicate instability in vortices whose axes are nearly parallel to the cylinder axis, 
that is, the spiral is stretched out. Ludwieg’s (1964) data show this trend, and 
the photograph in the cited paper shows the elongated spiral quite clearly. 

Unfortunately, the experiment cannot be said to answer one question posed 
by our comparison of energy and linear theory, that is, the possibility of in- 
stability for values of p between the energy and linear limits. This is true for 
two reasons. First, there is too much scatter in the data. One does not expect 
stable points (white dots) to lie above the instability (linear) limit or unstable 
points to lie below the stability (energy) limit. Secondly, and more important, 
even if the experiment and theory were a perfect match, one could not exclude 
the possibility that non-linear unstable modes exist by observing the existence 
of unstable linear modes. 

There are four important observables in an experiment like Ludwieg’s: (1) the 
threshold limit, (2) the spiral angle, (3) the wave speed for the disturbances or 
the value of Sl for which the deepest instability is steady (8.3), and (4) the spiral 
vortex spacing?. Only (1) and (2) are discussed by Ludwieg. 

number of cells is that predicted by energy theory. 
t If every other white band in the photograph of Ludwieg’s paper is a cell, then the 
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11. Poiseuille-Couette rotating flow 
It is possible to reduce (7.11) to an identity for profiles of the parabolic form 

(2.3). For these profiles, one can also rule out sublinear instability. For a much 
wider class of flows where no exact result is available, we expect that (7.11) gives 
a good approximation to parameter values for which the motion is most unstable 
to small disturbances. 

First, we consider parabolic profiles of the form (2.3) and note that the first 
term of (7.14) is identically zero for motions of this form. In the limit 7 + 1, 
this problem reduces to the spiral Couette problem treated earlier. Our inquiry 
here is for 7 =I= 1; the value 7 = 0, which corresponds to Hagen-Poiseuille flow, 
is the physically most interesting case. 

To have an exact result for (4.1), (4.8) valid for all 7, one notes that for the 
motion with solid rotation but no differential rotation F‘ = 0, one can find an 
exact solution of the problem 

p&n2 = n2Lu, L2#‘+pn2u = 0, 1 = D#’ = u = O ~ ~ = q , ~ l - q ~ , l ~ ( l - q ) ,  (11.1) 

which arises from (4.1), (4.2). This problem is equivalent to 

(11.2) 

and, since L$ + Ad, = 0 is a Bessel’s equation and 

we can solve (1  1.2) with Bessel functions. The exact procedure for finding this 
solution and the a analytic perturbation of it is given by Joseph & Carmi (1 969). 

Given the existence of this energy solution, it is a simple matter to demonstrate, 
using theorem 1, that the solution also solves the linear problem when the rota- 
tion parameters are properly adjusted. To see this, put V = 0 in (6.2) and replace 
allid, and ajaX with n and cr to find 

0 = curl(( 1 - (R2/.Rt)) UqZu> - u(U,n/Rt i- 2&>. 

Let 2Qi% + Uqn/Rt = 0, E --f 0 where n is the azimuthal periodicity of the energy 
solution for the given 7. For this limit (Q -f a), the energy and linear eigenvalue 
problems coincide. 

Now we ask, does Z = 0 give the energy eigenvalue ( vE or l/pE) its largest value 1 
This question has been answered affirmatively for Poiseuille motion (U, = 0) 
of type ( 2 . 2 )  when 7 2 0.04; but for 7 = 0 (Hagen-Foiseuille flow), the maximizing 
energy eigenfunction has a spiral form (Joseph & Carmi 1969). We guess that this 
same result holds for the parabolic profile of form (2.3) and have verified this 
numerically for 7 = 0.2 (figure 9). 

Given that Z =  0 does give the energy eigenvalue its largest value, we can 
rigorously exclude sublinear instabilities when E -+ 0, R --f a, !2Z --f - U,n/Rf. 
It is to be expected that, just as for the spiral Couette flow, this result will persist, 
nearly, if there is also a differential rotation, and the parameters are chosen as 
in (8.3) and (8.4). 
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FIGURE 9. Energy result for parabolic profile with q = 0.2. The results of exact numerical 
integration show that the minimum eigenvalue occurs with wave-numbers a = 0 , q  = 2. 
Hence, sublinear instabilities are excluded for such flows provided the annulus is rotated 
rapidly. 
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FIGURE 10. Energy and linear stability results for Poiseuille flow in a rapidly rotating 
annulus. The linear results were obtained by numerical integration of the linear equations 
for the case of a = 0, = co such that aR is a finite constant, and the energy results are 
from Joseph & Carmi (1969). It is seen that a large rigid-body rotation of the annulus 
forces the linear limit down to the neighbourhood of the energy limit. 
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The reader will wonder what would be the situation for a true Poiseuille spiral 
flow (Up $: 0, U, = 0). It is not possible for this motion to satisfy (7 .11)  with 7 > 0, 
and one does not expect a close approach between the energy and linear limit. 
Nevertheless, it remains true that the introduction of rotation even without dif- 
ferential rotation can drop the linear limit by over one order of magnitude and 
bring the threshold of instability down to energy-like values (Pedley 1969; 
Nagib et al. 1969). 

In figure 10, we have given the linear and energy limit, calculated numerically, 
for rotating Poiseuille flow for IR --f 00. The energy limit is independent of R. 
Though we cannot make the shaded band smaller, it does confine possible sub- 
linear instability to a narrow band of Reynolds numbers. The addition of 
differential rotation would not, we expect, alter this qualitative situation and, 
in a rough way, equations (8.3), (8.4), which give the values of Q in which the 
disturbance is steady and the value of IR2 for which the linear and energy limits 
are closest, could be expected to hold. 

A portion of this paper constitutes part of the Ph.D. thesis of B. R. Munsoii. 
The work was supported in part by the NSF grant GK-1838 and was completed 
during the period of a visit by D. D. Joseph to Imperial College made possible 
by a fellowship from the Guggenheim foundation and the hospitality of the 
Department of Mathematics. 
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